Chebyshev's Inequality

Chebyshev's Inequality

The probability that $|X - E(X)| > \varepsilon$ is less than $V(X)/\varepsilon^2$ or the probability that $|X - E(X)| \le \varepsilon$ is more than $1 - V(X)/\varepsilon^2$. where ε is a positive number. Proof:

$$V(X) = (x_1 - E(X))^2 p(x_1) + (x_2 - E(X))^2 p(x_2) + \ldots + (x_k - E(X))^2 p(x_k)$$

The x's on the right side of the equation can be numbered so that all of the terms for which $|x_i - E(X)| > \epsilon$ come before the rest of the terms. Let h be the highest subscript for the terms for which $|x_i - E(X)| > \epsilon$, then:

$$(x_1 - E(X))^2 p(x_1) + (x_2 - E(X))^2 p(x_2) + \ldots + (x_h - E(X))^2 p(x_h) \le V(X)$$

Substitute ε^2 for $(x_i - E(X))^2$ in terms on the left side of inequality getting: $\varepsilon^2(p(x_1) + p(x_2) + \ldots + p(x_h)) < V(X)$.

So $p(x_1) + p(x_2) + \ldots + p(x_h) < V(X)/\epsilon^2$

So since the probability that $|X - E(X)| > \varepsilon$

equals $p(x_1) + p(x_2) + \ldots + p(x_h)$, we get

The probability that $|X - E(X)| > \epsilon$ is less than $V(X)/\epsilon^2$ or the probability that $|X - E(X)| \le \epsilon$ is more than 1 - $V(X)/\epsilon^2$.

Daniel Daniels